Exploring the structure of a hydrogen cyanide polymer by electron spin resonance and scanning force microscopy.

نویسندگان

  • M P Eastman
  • F S E Helfrich
  • A Umantsev
  • T L Porter
  • R Weber
چکیده

Aqueous solutions of potassium cyanide and ammonium hydroxide are known to yield a heterogeneous cyanide polymer, containing paramagnetic sites and biologically significant substructures including polypeptides. Here, such solutions were used to prepare various samples of polymer for study by X-band and W-band electron spin resonance (ESR), scanning electron microscopy (SEM), and scanning force microscopy (SFM). Elemental composition of a typical sample of the polymer was C-35.2%, N-38.47%, 0-14.51%, and H-4.13%, exposing the polymer to 6M HCl hydrolyzed portions of the polymer and released glycine and traces of other amino acids. The X-band ESR spectra consist of a single slightly asymmetric line centered at g = 2.003; spin concentration measurements made at X-band using a nitroxide radical standard yield approximate radical concentrations of 10(18) spins/gm. W-band ESR indicates the presence of a single rhombic paramagnetic site with g(x) = 2.0025, g(y) = 2.0030, and g(z) = 2.0048 and the possibility of small 14N hyperfine splittings. The ESR spin echo studies yield a longitudinal relaxation time, Tl of 75 microS and a short-phase memory relaxation time, Tm, of about 300 nS. Scanning electron microscopy studies of the polymer show that it is made of ellipsoidal particles about one micron in size. The particles tend to clump together when suspended in aqueous solution. The particles disperse and dissolve in dimethyl sulfoxide (DMSO); when these solutions dry on microscope slides, optical microscopy shows a branched island morphology for the polymer. This morphology is reminiscent of snowflakes and is identified as dendritic. Phase contrast SFM of the dendritic arms show a striking segregation and ordering of various components of the polymer. Paramagnetic sites are conserved in the series of steps leading to dendritic structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Immobilised TiO2 in Polyvinylidene fluoride (PVDF) Membrane for Photocatalytic Degradation of Methylene Blue

Immobilised titanium dioxide (TiO2) in membrane structures has recently become attractive. This is due to the elimination of the separation step after the process of photocatalytic degradation. The efficiency of the TiO2 surface area exposed to UV light as the main important parameter needs to be considered. The immobilisation of TiO2 nanoparticles in the polyvinylidene fluoride (PVDF) membrane...

متن کامل

Nano-Structure Roughening on Poly(Lactic Acid)PLA Substrates: Scanning Electron Microscopy (SEM) Surface Morphology Characterization

Scanningelectron microscopy (SEM) has been utilized  to examine  the morphology and topography alterations  in the surface of Poly(Lactic Acid)(PLA) fabrics due to UV/Ozoneirradiation. In the past decade, a growing attention in the usage of “Green Techniques” in industrial applications has been observed owing to many benefits such as low impurities and their relatively low cost to substitute th...

متن کامل

Sonochemical Synthesis of a Cobalt(II) Coordination Polymer Nano-structure with azo ligand: A New Precursor for Preparation Pure Phase of Co3O4 Nanostructure

A new nano-sized cobalt(II) coordination polymer, (CoL1).0.5DMF.1.5CH3OH(1); [H2L1 = 5-(4-Carboxy phenyl azo) salicyilic acid] has been synthesized by a sonochemical method. The thermal stability of compound 1 was studied by thermo- gravimetric and differential thermal analyses. Nano-structure of this coordination polymer was characterized by elementa...

متن کامل

EPR studies of Cd substituted Mn Zn nanoferrites

Nanoparticles of Mn0.5Zn0.5-xCdxFe2O4 with x varying from x = 0.0 to 0.3 were prepared by wet chemical co-precipitation method. The structural and magnetic properties were studied by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM) and Electron Paramagnetic Resonance (EPR) technique. ...

متن کامل

Interfacial Compatibility of Polymer-based Structures in Electronics

Interfacial compatibility of dissimilar materials was investigated to achieve a better understanding of interfacial adhesion in metal/polymer/metal systems. Surface modifications of polymers were applied to improve the adhesion. The modified surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Scanning

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2003